支付方式:支付宝,售后请发订单号至:[email protected]

Reinforcement Learning: With Open AI, TensorFlow and Keras Using Python by Abhishek Nandy, Manisha Biswas

Reinforcement Learning: With Open AI, TensorFlow and Keras Using Python by Abhishek Nandy,  Manisha Biswas Reinforcement Learning: With Open AI, TensorFlow and Keras Using Python by Abhishek Nandy,  Manisha Biswas


Master reinforcement learning, a popular area of machine learning, starting with the basics: discover how agents and the environment evolve and then gain a clear picture of how they are inter-related. You’ll then work with theories related to reinforcement learning and see the concepts that build up the reinforcement learning process.

Reinforcement Learning discusses algorithm implementations important for reinforcement learning, including Markov’s Decision process and Semi Markov Decision process. The next section shows you how to get started with Open AI before looking at Open AI Gym. You’ll then learn about Swarm Intelligence with Python in terms of reinforcement learning.

The last part of the book starts with the TensorFlow environment and gives an outline of how reinforcement learning can be applied to TensorFlow. There’s also coverage of Keras, a framework that can be used with reinforcement learning. Finally, you'll delve into Google’s Deep Mind and see scenarios where reinforcement learning can be used.

What You'll Learn
Absorb the core concepts of the reinforcement learning process
Use advanced topics of deep learning and AI
Work with Open AI Gym, Open AI, and Python Harness reinforcement learning with TensorFlow and Keras using Python

Who This Book Is For

Data scientists, machine learning and deep learning professionals, developers who want to adapt and learn reinforcement learning.


购买和发货:
1.需要注册登录后方可购买。
2.购买后自动发送百度网盘链接到您的邮箱或在历史订单中查看下载链接。
3.无特殊说明,epub,mobi(kindle用),pdf三种格式都会提供。
4.音频为全文朗读有声书,mp3格式。


购买

  • 您还没有选择任何商品哦。

Reinforcement Learning: With Open AI, TensorFlow and Keras Using Python by Abhishek Nandy, Manisha Biswas:等您坐沙发呢!

发表评论

您必须 [ 登录 ] 才能发表留言!